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Abstract: Lifestyle interventions, including meal replacement, are effective in the prevention and 

treatment of type-2-diabetes and obesity. Since insulin is the key weight regulator, we hypothesised 

that the addition of meal replacement to a lifestyle intervention reduces insulin levels more effec-

tively than lifestyle intervention alone. In the international multicentre randomised controlled 

ACOORH (Almased Concept against Overweight and Obesity and Related Health Risk) trial, over-

weight or obese persons who meet the criteria for metabolic syndrome (n = 463) were randomised 

into two groups. Both groups received nutritional advice focusing on carbohydrate restriction and 

the use of telemonitoring devices. The intervention group substituted all three main meals per day 

in week 1, two meals per day in weeks 2–4, and one meal per day in weeks 5–26 with a protein-rich, 

low-glycaemic meal replacement. Data were collected at baseline and after 1, 3, 6 and 12 months. 

All datasets providing insulin data (n = 446) were included in this predefined subanalysis. Signifi-

cantly higher reductions in insulin (−3.3 ± 8.7 µU/mL vs. −1.6 ± 9.8 µU/mL), weight (−6.1 ± 5.2 kg vs. 

−3.2 ± 4.6 kg), and inflammation markers were observed in the intervention group. Insulin reduction 

correlated with weight reduction and the highest amount of weight loss (−7.6 ± 4.9 kg) was observed 

in those participants with an insulin decrease > 2 µU/mL. These results underline the potential for 

meal replacement-based lifestyle interventions in diabetes prevention, and measurement of insulin 

levels may serve as an indicator for adherence to carbohydrate restriction. 
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1. Introduction 

Weight gain or loss is regulated by the anabolic hormone insulin [1]. It is a key regu-

lator for not only promoting glucose uptake and lipogenesis but also inhibiting lipolysis 

[2]. Even brief increases in food consumption lead to immediate increases in insulin levels 

[3], and permanently elevated insulin levels have been shown to be associated with weight 

gain and obesity [1]. Moreover, insulin is involved in the regulatory processes of immune 

cells promoting subclinical inflammation [4,5], a further independent risk factor for type-

2-diabetes. 

It is well known that lifestyle interventions have been successful not only in the pre-

vention [6–8] but also in the treatment of type-2-diabetes, even reaching diabetes remis-

sion [9,10]. Especially in studies demonstrating remission, an energy-restricted diet led to 

a rapid drop in insulin levels and restoration of biphasic glucose-induced insulin release 

[11]. Nevertheless, lifestyle interventions are often criticised for being unsustainable be-

cause a substantial number of participants are not able to adhere to the food restrictions 

during studies or old eating habits, such as a more frequent carbohydrate consumption, 

return after the end of interventions. 

The Almased Concept against Overweight and Obesity and Related Health Risk 

(ACOORH) trial [12–14] is an international multicentre randomised controlled interven-

tion study comparing the effects of a meal replacement-based lifestyle intervention vs. 

lifestyle intervention alone in overweight or obese adults with risk factors for metabolic 

syndrome. Previously published data demonstrated significantly higher success in weight 

reduction in the meal replacement intervention group compared to the control group with 

an estimated treatment difference (ETD) −3.2 kg (−4.0; −2.5) (p < 0.001) [12]. Moreover, a 

subanalysis of participants with prediabetes at baseline showed that reconversion to 

normoglycemia was significantly more often achieved in the intervention group (50% vs. 

31%; p < 0.05) [13]. 

So far, it is unclear to what extent carbohydrate reduction achieved by protein-rich, 

low-glycaemic meal replacement affects the insulin level in overweight or obese people 

with risk factors for metabolic syndrome. Therefore, in this subanalysis of the ACOORH 

trial, we examined the effect of the meal replacement intervention on the change in insulin 

levels in relation to weight loss and inflammation markers with respect to participants’ 

adherence to the intervention. 

2. Materials and Methods 

2.1. Study Design and Population 

From 463 participants of the initial ACOORH trial cohort, only those who had a com-

plete set of data regarding fasting insulin (n = 446) were considered in the present suba-

nalysis. Individuals (n = 17) without fasting insulin values were excluded from this anal-

ysis (Figure 1). Details of the international multicentre ACOORH intervention had been 

previously published [12–14]. In brief, participants were randomised with a 1:2 allocation 

ratio into either a lifestyle intervention control group (n = 155) or a meal replacement-

based lifestyle intervention group (n = 308). Twenty-six weeks of an intensive lifestyle 

intervention were followed by a moderate intensive follow-up phase until week 52. The 

first participant was included in January 2015 and the last examination took place in Au-

gust 2017. Individuals 21–65 years old with a body mass index (BMI) of 27–35 kg/m2 

and/or a waist circumference of ≥ 88 or ≥ 102 cm (females and males, respectively), and at 

least one of the following criteria of metabolic syndrome: (a) fasting blood glucose (FBG) 

100–125 mg/dL, (b) triglycerides 150–400 mg/dL, (c) high-density lipoprotein (HDL) 
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cholesterol < 40 mg/dL, or (d) untreated systolic blood pressure of 140–160 mmHg or di-

astolic blood pressure of 90–100 mmHg or use of antihypertensive medication, were eli-

gible for participation in the ACOORH trial. Participants were excluded when one or more 

of the following exclusion criteria existed: (i) diabetes mellitus with FBG ≥ 126 mg/dl or 

HbA1c ≥ 6.5% (≥ 48 mmol/mol) or diabetes-related medical history (e.g., antidiabetic 

drugs or medical records); (ii) total body weight > 141 kg; (iii) acute infections; (iv) chronic 

diseases, such as cancer, asthma, chronic obstructive pulmonary disease, chronic gut dis-

eases, liver cirrhosis, nephropathy, and kidney insufficiency with glomerular filtration 

rate < 30 mL/min/1.73 m2, dementia, or psychoses; (v) plans to move to areas not served 

by ACOORH; (vi) (planned) smoking cessation during the study; (vii) use of medication 

for active weight reduction; (viii) pregnancy or breast feeding; and (ix) known intolerance 

with components of the used meal replacement. 

 

Figure 1. Flow chart. 

2.2. Intervention and Meal Replacement Regimen 

Participants of both groups visited the study centre at baseline as well as after 4, 12, 

26, and 52 weeks. Participants received nutrition counselling at the study visits and were 

instructed to increase physical activity [12]. Additionally, both groups were equipped 

with telemetric scales and pedometers that automatically transferred data into a person-

alised online portal (for details see [12]). During study visits, acquired data (e.g., steps, 

weight, diet protocols) were discussed and participants were motivated to achieve their 

individual goals (e.g., weight reduction, healthy lifestyle changes). 

Participants of the intervention group additionally received a high-protein, low-gly-

caemic meal replacement (Almased, Almased Wellness GmbH, Oberding, Germany) dur-

ing the first 26 weeks as previously described [12]. In brief, in the first week all three main 

meals were replaced, then in weeks 2–4 only breakfast and dinner, and afterward only 

dinner was replaced until week 26. An accompanying manual included information about 

the preparation of the meal replacement as well as general facts about low-carbohydrate 

meals and their influence on blood glucose and insulin levels, hunger, and weight loss.  
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2.3. Outcomes and Measurements 

Anthropometrical, clinical (weight, BMI), and laboratory data (fasting insulin, fasting 

blood glucose, HbA1c) were measured as previously described [12–14] at baseline; after 

4, 12, and 26 weeks of intervention; and after 52 weeks. C-reactive protein (CRP) and in-

terleukin (IL)-6 were analysed in an accredited medical laboratory (Synlab, Leinfelden, 

Germany). Adverse and serious adverse events were continuously reviewed by an exter-

nal monitor [12]. The assessors were blinded to group allocation. 

2.4. Statistics 

Sample-size calculation and its assumptions can be found elsewhere [12]. Per-proto-

col (PP) and intention-to-treat (ITT) analyses were performed, although, if not otherwise 

stated, the ITT results were reported. The last observation carried forward (LOCF) princi-

ple was used for imputation of missing values. The present predefined subanalysis fo-

cuses on the tertiary outcome of within-group changes from baseline to week 12 and week 

52 regarding fasting blood insulin and the accompanied parameters, such as weight, BMI, 

HbA1c, and fasting blood glucose. In order to analyse the influence of fasting insulin lev-

els on weight changes, tertile stratification was performed for the achieved insulin reduc-

tions after 6 months (1st tertile = insulin reduction of > 2 µU/mL; 2nd tertile = constant insu-

lin values with changes ≤ 2 µU/mL; 3rd tertile = insulin increase > 2 µU/mL) and was related 

to the weight reduction at the same time points. These changes were compared between 

control and intervention groups. In addition, the weight courses of the intervention group 

in these three tertiles were analysed. In a further subanalysis, we separately analysed data 

of those participants who were compliant with the study protocol, i.e., the participants who 

performed the meal replacement as recommended and completed all study visits. They 

were defined as “completers”. Those who either stopped the meal replacement prematurely 

or who did no longer appear for the visits were defined as “dropouts”. 

Non-parametric data were analysed with Mann-Whitney U, Wilcoxon, or Kruskal-

Wallis tests along with Dunn’s multiple comparison test. Parametric data were evaluated 

with Student’s t-test, paired t-test, or analysis of variance with repeated measures. Multi-

variable linear regression analyses were performed to examine the associations of changes 

in fasting insulin levels and weight after 4, 12, 26, and 52 weeks of intervention and were 

corrected for baseline values. All statistical tests were two-sided, and the level of signifi-

cance was set at p = 0.05. The statistical analysis was performed by an independent insti-

tute (ACOMED statistik®, Leipzig, Germany) not involved in the study execution. All 

analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and GraphPad 

Prism 6.04 (GraphPad Software, San Diego, CA, USA). 

3. Results 

3.1. Stronger Improvement in Fasting Insulin Levels and Body Weight in the Intervention Group 

Baseline characteristics (Table 1) did not differ significantly between the control and 

intervention groups. 

Table 1. Baseline characteristics. 

Parameters Control Group (n = 145) Intervention Group (n = 301) 

Sex (male/female) (n) 57/88 (39%/61%) 99/202 (33%/67%) 

Age (years) 50 ± 10 51 ± 10 

Fasting insulin (µU/mL) 14.1 ± 9.5 15.3 ± 10.2 

Weight (kg) 94 ± 11 92 ± 13 

Body Mass Index (kg/m2) 31.4 ± 2.3 31.6 ± 2.3 

Fasting blood glucose (mg/dL) 94 ± 11 94 ± 13 

HOMA-IR 3.3 ± 2.4 3.6 ± 2.5 

HbA1c (%) 5.5 ± 0.4 5.5 ± 0.6 
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Interleukin 6 (pg/mL) 3.2 ± 3.5 3.4 ± 3.6 

C-reactive protein (mg/dL) 0.5 ± 1.0 0.5 ± 1.0 

Shown are means ± standard deviations, or percentages. In the control group (n = 35) and in the 

intervention group (n = 73) datasets were missing for interleukin 6 and C-reactive protein. HOMA-

IR, homeostasis model assessment of insulin resistance; HbA1c, glycosylated haemoglobin A1c. 

During the intervention, fasting insulin levels significantly decreased in both groups 

(within group comparison: p < 0.0001 at all time points in the intervention group and p < 

0.05 in the control group), although insulin reduction was significantly higher in the in-

tervention group (Figure 2a). In parallel, significant weight reduction was observed in 

both groups (within group comparisons for both: p < 0.0001 at all time points) but also 

showed a higher reduction in the intervention group (Figure 2b). The highest insulin level 

(−3.3 ± 8.7 µU/mL in the intervention group vs −1.6 ± 9.8 µU/mL in the control group) and 

weight reductions (−6.1 ± 5.2 kg vs. −3.2 ± 4.6 kg) were observed after six months at the 

end of the intervention phase. In cases where the meal replacement was discontinued in 

accordance with the study protocol at week 26, insulin levels in the intervention group 

started to increase and reached the insulin levels of the control group. Accordingly, the 

weight data also show a re-increase after week 26 when the meal replacement phase was 

finished. 

3.2. Stronger Improvement in Chronic Inflammation in the Intervention Group 

There was a trend toward a reduction of the proinflammatory inflammation markers 

CRP and IL-6 in the intervention group following the intervention, peaking after six 

months, while the control group showed no consistent change over time (Figure 2c,d). 

 

Figure 2. Intention-to-treat analyses of improvements during the study. Mean ± standard errors of 

changes in (a) fasting insulin levels and (b) body weight are shown and the Mann-Whitney test 

was used for intergroup analyses of the intervention group (n = 301) and the control group (n = 

145). Tukey plots with median ± interquartile range are shown for (c) C-reactive protein (CRP) and 
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(d) interleukin 6 (IL-6). Wilcoxon signed rank test was used for intragroup analyses (*, p < 0.05; **, 

p < 0.01; ***, p < 0.001; ****, p < 0.0001). 

3.3. Correlation of Improvements in Fasting Insulin Reduction and Weight Loss 

A significant correlation between the reduction of fasting insulin and body weight 

could be observed consequently at all observation times throughout the study (Table 2). 

Table 2. Associations between Δ fasting insulin and Δ weight. 

Parameters Month r p ß p 

Control 

Group 

(n = 145) 

1 0.074 0.375 0.086 0.182 

3 0.127 0.128 0.209 0.002 

6 0.294 <0.001 0.342 <0.001 

12 0.216 0.009 0.263 <0.001 

Intervention 

Group 

(n = 301) 

1 0.180 0.002 0.180 <0.001 

3 0.214 <0.001 0.195 <0.001 

6 0.279 <0.001 0.280 <0.001 

12 0.208 <0.001 0.278 <0.001 

Bold p-values represent significance. Multivariable linear regression analyses were carried out to 

investigate associations between changes in fasting insulin and weight after 1, 3, 6, and 12 months 

and were adjusted for baseline values. 

Tertile analyses demonstrated in both control and intervention groups significantly 

higher weight reductions in the 1st insulin tertile compared to the 2nd and 3rd tertiles (p 

< 0.0001 each) (Figure 3a). Thus, those participants who could reduce their insulin levels 

more than 2 µU/mL had a weight loss −7.6 ± 4.9 kg in the intervention group vs. −5.5 ± 4.9 

kg in the control group (p < 0.01). Participants with unchanged insulin levels demon-

strated a weight reduction 5.1 ± 5.0 kg in the intervention group vs. 1.8 ± 1.4 kg in the 

control group (p < 0.0001), while increased insulin levels were associated with weight loss 

of 3.0 ± 4.9 kg in the intervention group vs. 1.2 ± 5.0 kg in the control group. The tertile 

analyses further demonstrated that the participants with insulin reduction also achieved 

the highest weight reduction over the course of the study, while the group with increased 

insulin values already started to regain weight after six months (p < 0.0001 vs. the 1st tertile 

as control) (Figure 3b). 

3.4. Dropouts Explain the Re-Increase in Insulin and Weight 

In order to better understand how insulin levels are associated with weight loss, we 

performed a subanalysis based on adherence to the study protocol (i.e., meal replacement 

completers vs. dropouts). Figure 3c shows that participants in the intervention group who 

achieved a mean reduction in insulin levels of 2.5 ± 9.5 µU/mL in the first four weeks of 

the study, insulin levels rose again when they stopped meal replacement, while the com-

pleters achieved insulin reductions of −3.7 ± 8.6 µU/mL. The same effects can be seen with 

weight, but with a certain delay (Figure 3d). When comparing both groups, we can see 

that the dropouts of the intervention group from week 12 onward achieved a weight re-

duction slightly higher than the completers of the control group. 
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Figure 3. Weight reduction is related to insulin reduction. Participants were divided into three tertile 

groups according to their changes in insulin levels after six months compared to the baseline (1st 

tertile = insulin reduction of > 2 µU/mL; 2nd tertile = constant insulin values with changes ≤ 2 

µU/mL; 3rd tertile = insulin increase > 2 µU/mL). Weight reduction (a) after six months in both 

groups and (b) in the intervention group alone (n = 301) during the whole study period was com-

pared between tertile groups using Kruskal-Wallis test with Dunn’s multiple comparison test (**, p 

< 0.01; ****, p < 0.0001). Subanalyses of reduction in (c) insulin levels and (d) weight were performed 

for dropouts (n = 44 in the control group and n = 85 in the intervention group) and completers (n = 

101 in the control group and n = 216 in the intervention group). The areas between the curves of the 

dropouts (dotted lines) and the completers (dashed lines) were filled with colour and the curves of 

the whole group (solid lines; here described with “all”) were added. 

4. Discussion 

The international multicentre randomised controlled ACOORH trial demonstrated 

the superiority of a lifestyle intervention accompanied by a dietary change of a high-pro-

tein, low-glycaemic meal replacement compared to a control lifestyle intervention alone. 

Consequently, this superiority led to a greater reduction in fasting insulin levels. Further-

more, the insulin reduction correlated with the achieved weight reduction and was ac-

companied by improvements in inflammation markers. Participants who prematurely 

ended meal replacement still achieved insulin and weight improvements comparable to 

the control group. After the end of the intervention, both insulin levels and weight in-

creased again but remained significantly below baseline levels. 

In this subanalysis of the ACOORH trial, we primarily focused on fasting insulin as 

insulin not only mediates glucose uptake from the blood into the cells but also has further 

physiological regulatory functions. For example, insulin inhibits lipolysis at a much lower 

concentration than it is needed for glucose uptake [1]. By using a microdialysis technique 

in combination with a three-step hyperinsulinaemic glucose clamp, Jacob et al. [2] demon-

strated in nineteen lean, healthy subjects that low physiological concentrations of insulin 
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are able to inhibit lipolysis in muscle up to nearly 50% and in adipose tissue up to 75%. 

Thus, every insulin-releasing carbohydrate consumption might be able to slow down or 

even completely block lipolysis in the human body. To what degree the lipolysis is inhib-

ited depends on the BMI. When lean people (BMI < 25 kg/m2) consumed 75 g glucose, they 

show only a small and short-term increase in insulin [15]. However, when people with 

obesity (BMI > 30 kg/m2) ingested the same amount of glucose, their insulin levels rose for 

hours. In fact, in participants with obesity, insulin levels were already increased in the 

fasting state, rose nearly twice as high after glucose consumption, and remained elevated 

for nearly one hour longer compared to lean individuals, resulting in an inhibition of li-

polysis. When obese people consumed carbohydrate-containing meals and snacks 

throughout the day, the inhibitory activity of insulin on lipolysis would explain why los-

ing weight is hardly achievable in the obese state. If obese people want to reduce weight, 

the first aim should be to lower their insulin levels [16,17]. Therefore, in the first phase of 

a diary intervention it is necessary to strictly reduce or nearly eliminate carbohydrate in-

take [18,19]. Furthermore, food intake needs to be reduced to a maximum of three meals 

per day so that insulin levels can decrease between each meal and lipolysis can be acti-

vated. Meal frequency is a controversial topic, however, the evidence in favour of a lower 

meal frequency was demonstrated in a recently published review [20]. Reduced meal fre-

quency with 2–3 meals per day and regular fasting periods were shown to provide phys-

iological benefits [21,22]. Analyses of isocaloric diets of either two or six meals per day on 

energy expenditure ,measured in a metabolic chamber, showed a significantly higher en-

ergy expenditure at night with a two-meal diet [23]. Thus, we instructed our participants 

to reduce their carbohydrate intake and to eat no more than three meals per day. Partici-

pants who achieved the greatest success in losing weight were those who lowered their 

insulin levels the most. Therefore, measuring insulin levels could possibly be used in the 

future to monitor the degree of compliance with the carbohydrate restriction. 

It is well known that metabolic disorders with elevated insulin levels, such as obesity, 

metabolic syndrome, and type-2-diabetes, are associated with and accompanied by 

chronic subclinical inflammation. Thus, insulin is also thought to be involved in regulat-

ing the activation status of immune cells. Normally, naive T cells gain energy by oxidation 

of fatty acids [4]. However, their signal to become activated is conveyed by glucose admis-

sion and a switch to aerobic glycolysis [5,24]. Activation with lipopolysaccharide (LPS) also 

leads to the use of glycolysis in classic proinflammatory macrophages and dendritic cells 

[25,26]. Another example are IL-4-induced alternatively activated macrophages, which help 

to suppress inflammatory signals as they become down regulated in hyperinsulinaemia and 

obesity [27–29]. As glycolysis is mainly found in inflammatory and rapidly proliferating 

immune cells, and in contrast long-living and anti-inflammatory cells are related to β-oxi-

dation, it can be concluded that key enzymes and metabolic programs can instruct immune 

cells to carry out proinflammatory or anti-inflammatory functions. This relation could ex-

plain why increased inflammatory reactions are observed in the context of overeating with 

a large proportion of carbohydrates. An increased fat metabolism for immune functions, on 

the other hand, indicates a pronounced anti-inflammatory effect. 

Various studies, in which carbohydrate restriction and intermittent fasting were part 

of the intervention, not only showed a significant reduction in body weight in participants 

who were overweight but also a concomitant decrease in the concentration of inflamma-

tory markers in the blood [30–32]. Missing insulin signalling during fasting can therefore 

be seen as a regulator of the immune system as it influences the release of inflammatory 

cytokines, such as IL-6, in the body [33–35]. Moreover, intermittent fasting can delay im-

mune senescence, which is characterised by a progressive decline in immune function 

with increasing age, according to a publication in which the number of hematopoietic 

stem cells increased fivefold through a fast-imitating diet [36]. Further major changes as a 

result of nutrition restriction and lowered insulin levels in metabolic pathways and cellu-

lar processes, such as lipolysis, autophagy, and increased lifespan, have been discussed in 
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previous reviews [1,37]. Thus, a metabolic change caused by fasting can potentially be as 

medically effective as approved drugs [38–40]. 

Although the application of meal replacement is still a controversial topic, previous 

work [12,41] and reviews concerning such intervention studies have shown that adding 

meal replacement to lifestyle interventions can lead to greater weight reductions [42]. 

Since it has been shown that an effective change in lifestyle and diet can only be successful 

in the long-term with intensive support [43], an intervention should be started with high-

protein, low-glycaemic meal replacement for the diet change. The advantage here is that 

the meal composition is clear and easy to use while also containing all the necessary nu-

trients, vitamins, minerals, and trace elements. In addition, it has been shown that meal 

replacement can actively reduce insulin levels and these effects can be already seen after 

one week. Through meal replacement the daily insulin demand could be reduced by 40% 

in insulin-treated type-2-diabetes patients [44], while in noninsulin-treated type-2-diabe-

tes patients fasting insulin levels reduced by more than half [11]. Concomitantly, Lim et 

al. [11] demonstrated that the inhibited second-phase insulin secretion is restored after a 

successful meal replacement-based intervention, indicating that carbohydrate restriction 

by meal replacement is able to return insulin secretion back to physiological levels. Similar 

fast effects could only be seen after Roux-en-Y gastric bypass surgery where diabetes re-

mission was accompanied by the normalisation of fasting insulin levels within a few days 

before significant weight loss occurred and although patients were still obese [45]. 

If only the ITT analysis is considered, the present data must be viewed with reserva-

tions. Since it contains the data of the participants who adhered to the study protocol, as 

well as those who already finished the meal replacement after four weeks, there is the pos-

sibility of an underestimation of the results. The actual effects are therefore better reflected 

by the completers analysis, as it shows which effects can be achieved when the meal replace-

ment is applied according to the study protocol. The following also applies in any study: 

those who do not change their lifestyle cannot expect any improvement in metabolic values. 

However, the data show that even a four-week use of a meal replacement leads to a weight 

loss comparable to that achieved by the completers of the control group. 

A further limitation of the study is that after six months the participants were no 

longer intensively supported. By stopping the meal replacement and returning to normal 

eating habits with meals composed of 20 g/day higher carbohydrate content than the meal 

replacement (carbohydrate consumption in the intervention group was 198 ± 71 g/day at 

baseline, 146 ± 83 g/day after 12 weeks and 170 ± 95 after 52 weeks [14]) an increase in 

insulin levels was observed, which in turn was associated with a weight re-gain of ap-

proximately 1 kg over six months. Prospectively, the increasing carbohydrate consump-

tion and a subsequent weight gain might support a re-alteration of energy production in 

immune cells, i.e., from fat oxidation to glycolysis. Consequently, this might lead to a re-

increase in inflammation markers and would confirm the regulatory role of insulin in sub-

clinical inflammation. In further studies it would therefore be interesting to examine the 

effect of re-increasing carbohydrate consumption on the course of CRP and IL-6 and other 

inflammatory markers. 

5. Conclusions 

In sum, high-protein, low-glycaemic meal replacement-based lifestyle interventions 

can lead to a greater reduction in insulin levels even if the meal replacement is only used 

for a short time. The insulin reduction correlated with the achieved weight reduction and 

was accompanied by an decrease in inflammation markers. Meal replacement-based life-

style interventions should therefore not only be used in the treatment of manifested type-

2-diabetes but also in primary prevention, while insulin measurements might be used to 

monitor for compliance in carbohydrate restriction. 
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