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Insulin: too much of a good thing is bad
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Abstract

Background: Insulin shares a limited physiological concentration range with other endocrine hormones. Not only
too low, but also too high systemic insulin levels are detrimental for body functions.

Main body: The physiological function and clinical relevance of insulin are usually seen in association with its role
in maintaining glucose homeostasis. However, insulin is an anabolic hormone which stimulates a large number of
cellular responses. Not only too low, but also excess insulin concentrations are detrimental to the physiological
balance. Although the glucoregulatory activity of insulin is mitigated during hyperinsulinemia by dampening the
efficiency of insulin signaling (“insulin resistance”), this is not the case for most other hormonal actions of insulin,
including the promotion of protein synthesis, de novo lipogenesis, and cell proliferation; the inhibition of lipolysis,
of autophagy-dependent cellular turnover, and of nuclear factor E2-related factor-2 (Nrf2)-dependent antioxidative;
and other defense mechanisms. Hence, there is no general insulin resistance but selective impairment of insulin
signaling which causes less glucose uptake from the blood and reduced activation of endothelial NO synthase
(eNOS). Because of the largely unrestricted insulin signaling, hyperinsulinemia increases the risk of obesity, type 2
diabetes, and cardiovascular disease and decreases health span and life expectancy. In epidemiological studies,
high-dose insulin therapy is associated with an increased risk of cardiovascular disease. Randomized controlled trials
of insulin treatment did not observe any effect on disease risk, but these trials only studied low insulin doses up to
40 IU/day. Proof for a causal link between elevated insulin levels and cardiovascular disease risk comes from
Mendelian randomization studies comparing individuals with genetically controlled low or high insulin production.

Conclusions: The detrimental actions of prolonged high insulin concentrations, seen also in cell culture, argue in
favor of a lifestyle that limits circadian insulin levels. The health risks associated with hyperinsulinemia may have
implications for treatment regimens used in type 2 diabetes.

Keywords: Hyperinsulinemia, Insulin resistance, Nrf2, Autophagy, eNOS, Obesity, Type 2 diabetes mellitus,
Inflammation, Oxidative stress, Cardiovascular morbidity and mortality

Background
Most endocrine hormones exhibit a window of optimal
physiological concentrations, with compromised func-
tion of the organism at levels below or above that range.
For instance, subnormal levels of thyroid hormone de-
fine the clinical condition of hypothyroidism, above nor-
mal levels represent hyperthyroidism which usually
requires therapy. Addison’s disease is characterized by

insufficient cortisol production, while excess synthesis is
seen in Cushing syndrome.
For insulin, we argue here that not only hypoinsulinemia

but also hyperinsulinemia is detrimental to body functions.
Hypoinsulinemia causes insulin-deficient diabetes, and the
hormonal actions of insulin are necessary for the life of com-
plex organisms [1]. On the other hand, permanently elevated
levels of insulin may cause disturbance of normal cellular
physiology and organ function. We describe the molecular
basis of these undesired insulin actions and consequences of
hyperinsulinemia for health-relevant endpoints, such as obes-
ity or cardiovascular diseases.
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Main text
Insulin signaling pathways
Binding of insulin to its cognate cell surface-bound re-
ceptor causes a conformational change which initiates
a cascade of signaling events. Autophosphorylation by
the insulin receptor tyrosine kinase is accompanied by
tyrosine phosphorylation of receptor substrates, such
as insulin receptor substrate (IRS) and Src homology 2
domain-containing transforming proteins (SHC)
proteins. Phosphorylation of IRS allows binding of
phosphatidylinositol-3-kinase (PI3K) and synthesis of
phosphatidylinositol (3,4,5)-trisphosphate (PIP3),
which eventually leads to the phosphorylation and ac-
tivation of the serine/threonine-specific protein kinase
B (AKT). Upon activation, AKT interacts with several
substrates which mediate anabolic effects of insulin;
these include glucose uptake, glycogen synthesis, de
novo lipogenesis, and protein synthesis [2]. Additional
pathways triggered by the activated insulin receptor
comprise phosphorylation of SHC, followed by activa-
tion of the Rat sarcoma (Ras)–rapidly accelerated
fibrosarcoma (Raf)–mitogen-activated protein kinase
kinase (MEK)–extracellular signal-regulated kinase
(ERK) pathway. The terminal kinase ERK is a
mitogen-activated kinase promoting cell proliferation
and further cellular activities including protein synthe-
sis [3]. Another pathway triggered by the engaged in-
sulin receptor involves activation of NADPH oxidase 4
and subsequent hydrogen peroxide-mediated inhib-
ition of phosphatase and tensin homolog (PTEN),
which is an important negative regulator of PI3K
signaling [4] (Fig. 1).

Insulin secretion
Insulin secretion by pancreatic islet β cells responds to
the level of circulating nutrients such as glucose, amino
acids, and free fatty acids. Sweeteners may further in-
crease carbohydrate-induced insulin secretion. A large
number of endogenous factors contribute to the regula-
tion of β cell activity, either stimulatory, inhibitory, or
both context-dependent. These include hormones, neu-
rotransmitters, and immune mediators [5–12]. Insulin is
essential for maintaining glucose homeostasis, primarily
by facilitating the post-meal uptake of glucose into
muscle and fat cells via translocation of the glucose
transporter 4 [13]. In the absence of dietary glucose sup-
ply and after depletion of glycogen stores, glucose in cir-
culation primarily comes from gluconeogenesis in the
liver. If circulating insulin levels are below the concen-
trations required for stimulating glucose uptake from
the blood, endogenous stores of fat and protein must be
used for energy production. For the maintenance of life
in the fasting state, circulating insulin levels range be-
tween approx. 25 and 70 pmol/l (25–75% percentile), as
determined for healthy adult persons in the National
Health and Nutrition Examination Survey (NHANES)
[14]. In response to meals with varying carbohydrate
content, insulin levels may rise to the range of approx.
300–800 pmol/l [15].

Insulin promotes obesity
Almost 100 years ago, insulin injections were one of the
options of therapy in nondiabetic persons suffering from
undernutrition in the context of various diseases. Insulin
doses were in the range of those applied in type 1

Fig. 1 Metabolic signaling of insulin is anabolic. Insulin signaling through the insulin receptor engages several pathways and results in an
anabolic state of metabolism. The canonical pathway via phosphokinases PI3K and AKT/PKB promotes glucose uptake and glycogen and lipid
syntheses, whereas lipolysis is inhibited in adipocytes, as well as hepatic gluconeogenesis. In addition, AKT kinases activate mTORC1 which
supports de novo lipogenesis and protein synthesis. The insulin signaling pathway via SHC and the MAP kinases MEK and ERK promotes cell
proliferation and protein synthesis. Another insulin signaling pathway involves NOX4 and the inhibition of PTEN, an inhibitor of the PI3K-AKT pathway
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diabetes and led to increased appetite and weight gain
[16]. Indeed, one major function of insulin as an ana-
bolic hormone is to favor energy storage over usage.
This is reflected by the finding that insulin infusion (1
mU/kg/min) significantly inhibits lipolysis in the skeletal
muscle (about 43%) and even more effective in adipose
tissue (about 75%) [17]. Doubling fasting insulin levels
suffices to inhibit lipolysis by approx. 50% and to pro-
mote lipogenesis (for both, mean insulin concentration
for 50% effect (EC50) of approx. 80 pmol/l) [18]. At this
insulin level, gluconeogenesis is still ongoing. For half-
maximal inhibition of gluconeogenesis, insulin concen-
trations must rise to approx. 160 pmol/l in arterial circu-
lation. In order to stimulate glucose uptake to half
maximum, insulin levels must rise to even higher levels,
approx. ten times the fasting insulin concentrations (25–
75% percentiles for stimulating glucose uptake approx.
350–480 pmol/l) [18]. Thus, a modest rise (doubling) of
fasting insulin levels will already substantially inhibit lip-
olysis and promote lipogenesis while gluconeogenesis is
not yet inhibited. Since such small increases of systemic
insulin concentrations are enough for favoring adipogen-
esis, fasting and diurnal insulin levels are a determinant
of obesity risk. Indeed, several data support the obesity-
promoting role of insulin (for a detailed review see [18])
(Fig. 2).
These include epidemiological studies, which found

high fasting insulin levels (and concomitant insulin re-
sistance) in children and adolescents to be associated
with higher weight gain in later years [19]. Studies in
adults are less consistent [20]. Pharmaceutical interven-
tions that lower insulin secretion, such as treatment with
diazoxide or octreotide, led to significant body weight
loss [21–23]. This fits with the observation that insulin
therapy promotes weight gain [24]. One probable reason
is that insulin levels in the high normal range are close
to EC50 concentrations for inhibition of lipolysis [18].

In mice, modest lowering of circulating insulin con-
centrations by genetic manipulation of insulin genes
caused resistance to weight gain despite a high-fat diet
[25]. Decreasing insulin gene expression in adult mice
via partial gene ablation reversed diet-induced obesity
[26]. In men, the Hph1 “T” polymorphism in the insulin
gene region was found to be associated with higher fast-
ing insulin levels and a more rapid weight gain in obese
persons [27]. A Mendelian randomization analysis
showed that persons with genetically determined higher
insulin secretion to oral glucose exhibited a higher body
mass index (BMI) [28], supporting a causal relationship
between insulin and obesity risk.
Taken together, moderate to high normal levels of in-

sulin in metabolic healthy persons appear to be a risk
factor for the development of obesity.

Elevated insulin concentrations impair cellular
functions—insulin “toxicity”
There is ample evidence that transient increases of
metabolic or immune mediator levels are benign physio-
logical responses to biochemical challenges, such as the
rise of systemic glucose or cytokines following meals.
However, chronic elevations of such mediators, even
when modest in amplitude, are usually detrimental to
cellular functions [29]. In the case of glucose, the term
glucose toxicity was coined to describe this phenomenon
[30]. Prolonged conditions of elevated glucose concen-
trations cause dysfunction of numerous cell types in the
body, including beta cells, neurons, and the endothe-
lium, via several pathways, including increased oxida-
tive stress and activation of the sorbitol pathway [31–
33]. As described below, there seems to be a similar
detrimental outcome of long-term elevated insulin
concentrations on cellular functions, a corresponding
term would be insulin toxicity.

Fig. 2 Insulin promotes obesity. Several independent types of observations support the conclusion that insulin promotes adipogenesis and
obesity. For details, see description in the general text
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When cells are exposed to continuously elevated insu-
lin levels, there is a partial downregulation of insulin sig-
naling. The resulting “insulin resistance” is not primarily
due to less insulin receptor expression on the cell sur-
face but due to impaired insulin signal transduction as a
result of receptor dysfunction. In response to prolonged
hyperinsulinemia, there is diminished autophosphoryl-
ation of the insulin receptor, compared to that observed
after short-term exposure to insulin, and subsequent
steps of the PI3K–AKT signaling pathway are affected
[34, 35]. Consequently, in muscle and fat cells, there is
less AKT-stimulated translocation of GLUT 4 to the cell
surface (Fig. 3). Thus, insulin resistance can be seen as a
protective mechanism for preventing excess activation of
glucose transport from the blood despite chronically ele-
vated insulin levels, for maintaining glucose homeostasis
in vivo and for mitigating metabolic and oxidative stress
due to excess glucose influx [36–39]. Limiting glucose
export from the blood does not necessarily require
dampening of insulin signaling. During the early weeks
of feeding with a high caloric diet, mice show decreased
insulin-dependent glucose uptake despite unperturbed
insulin-stimulated AKT phosphorylation [40, 41] (Fig. 3).
An interesting aspect is that the partitioning of insulin
receptor isoforms A and B and of hybrid insulin/insulin-
like growth factor-1 receptors among cell types may
contribute to insulin resistance in some tissues, but the
pathophysiological relevance is unknown [42].
The phenomenon of insulin toxicity partly arises from

the fact that there are additional cellular responses to el-
evated insulin levels which are not toned down during

insulin resistance (Fig. 3). These comprise the upregula-
tion of protein synthesis and the accumulation of ubi-
quitinated or otherwise modified proteins, probably due
to insufficient degradation of these polypeptides [43]. A
major role of insulin signaling via the canonical
mitogen-activated protein (MAP) kinase pathway Ras–
MEK–ERK, as well as via activation of NADPH oxidase
4, has been observed [4]. Even some AKT-dependent
pathways do not appear to be suppressed by insulin re-
sistance, such as de novo lipogenesis in hepatocytes or
the upregulation of mechanistic target of rapamycin
complex 1 (mTORC1) [44–47]. Enhanced activity of
mTORC1 leads to increased protein synthesis and to de-
teriorated cell functions largely because of suppressed
autophagy [48].
Hence, chronic exposure of cells to high ambient insu-

lin concentrations causes an imbalance of cellular re-
sponses because of the downregulation of some insulin
signaling pathways (“insulin resistance”) but not of
others. The resulting functional state of cells is charac-
terized by an unbalanced anabolic activity of insulin fa-
voring protein synthesis while suppressing autophagy.
The latter inhibits autophagic removal and turnover of
proteins and lipids, which favors cell senescence [49]. In
short-term experiments of exposure to high insulin
levels, a protective cellular stress response is observed,
the unfolded protein response, probably due to the accu-
mulation of derivatized proteins in the absence of
enough disposal. In experimentally induced or diabetes-
associated chronic insulin resistance (and hyperinsuline-
mia), such a protective stress response of the

Fig. 3 Signaling of insulin during insulin resistance. During insulin resistance, signaling through AKT kinases is partially impaired. Not all AKT-
dependent pathways are affected, as well as other signaling pathways, indicating that insulin resistance is selective. Therefore, hyperinsulinemia,
in the presence of insulin resistance, promotes anabolic cell activities via the MEK–ERK pathway and via mTORC1. Although the PI3K/AKT pathway
is impaired during insulin resistance, and provides only insufficient translocation of GLUT4 for glucose uptake and deficient activation of eNOS,
there appears to be a normal activation of mTORC1. In addition to the anabolic consequences of signaling via the MEK/ERK pathway depicted in
the figure, there is enhanced expression of ET-1 and PAI-1 (not shown), as well as inhibition of autophagy and of the nuclear factor Nrf2, which
compromises cell constituent turnover and cell defense mechanisms to radical stress, respectively. Hyperinsulinemia downregulates glucose
uptake not only via dampening the PI3K/AKT pathway (“insulin resistance”) but also via as yet unknown other pathways
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endoplasmic reticulum to high insulin levels is dimin-
ished or absent [50].
Another activity of insulin is the suppression of tran-

scription of the nuclear factor Nrf2 via induction of het-
erogeneous ribonucleoproteins F and K [51]. Nrf2 is the
central regulator of the protective response of cells
against oxidative and other types of electrophile stress
[52]. Suppression of Nrf2 expression is expected to im-
pair the antioxidant and cytoprotective defense capacity
of cells. Insulin signaling required for Nrf2 inhibition oc-
curs via the MAP kinase pathway and thus is not miti-
gated by insulin resistance [53] (Fig. 3). It therefore can
be assumed that hyperinsulinemia increases the suscepti-
bility of cells against oxidative or other electrophile
stress caused by environmental insults. Prolonged expos-
ure of cells to high insulin concentrations can therefore
be regarded as toxic. Indeed, exposure to 0.5 nmol/l in-
sulin has been found to cause DNA damage in a number
of cell types, including human lymphocytes [42, 54]. At
the only concentration tested (100 nmol/l), insulin im-
pairs oxygen radical defense and sensitizes apoptosis
pathways in human islets [55]. In the brain of mice,
hyperinsulinemia impairs electrophysiological functions
of neurons and protein turnover, causing a transition to
a senescent cell state and an accompanying cognitive de-
cline [56]. The direct toxic property of insulin deserves
further study.

Chronically elevated insulin concentrations impair body
functions
Longevity
The above list of detrimental cellular responses to high
ambient insulin concentrations suggests concomitant
functional impairments at the level of the organism. This
fits with the observed impact of insulin on longevity.
Studies in nonvertebrate model systems such as the
nematode Caenorhabditis elegans or the fruit fly Dros-
ophila melanogaster find that moderate to high insulin
activity shortens lifespan [57, 58]. A consistent finding
from mouse model studies is that decreased signaling of
anabolic hormones like insulin, insulin-like growth fac-
tor, or growth hormone results in a prolonged lifespan
[59]. Disruption of the insulin-receptor substrate 1 gene
caused insulin-resistance with defects in insulin signaling
[60] and led to an extension of lifespan by 14–16% [61].
A knockout of the insulin receptor in adipose tissue of
mice resulted in an 18% increase of lifespan [62]. Dis-
ruption of the Ins1 gene and one of the two mouse Ins2
alleles lowered insulin levels by 25–34% (Ins2+/− mice
versus Ins2+/+ controls) in aged female mice without al-
tering circulating insulin-like growth factor (IGF)-1
levels. These aged experimental mice exhibited lower
fasting glucose, improved insulin sensitivity, and 3–11%
lifespan extension across two different diets [63].

Concomitantly, the proteome and transcriptome indi-
cated a profile associated with healthy aging. An import-
ant aspect is that this study selectively addressed insulin.
Other interventions for promoting longevity or extend-
ing healthspan, such as caloric restriction, not only lower
circadian insulin levels; but several additional hormones,
including IGF-1, are also affected [64].
Insulin, IGF-1, and hybrid insulin/IGF-1 receptors

share signaling via PI3K and AKT. The subsequent acti-
vation of the protein kinase mTORC1 is a major path-
way for supporting somatic growth, protein synthesis,
and fertility, while impeding autophagy and lifespan.
Suppression of mTOR signaling by treatment with rapa-
mycin prolongs life in model organisms and mice [65].
In humans, hyperinsulinemia in (pre) type 2 diabetes is
associated with increased mTORC1 activity which may
have a negative impact on beta cell survival, healthspan,
and longevity [66]. In the Leiden Longevity Study,
follow-up of nonagenarians for 10 years showed a strong
association of low insulin and glucose levels with healthy
aging [67].
Since both IGF-1 and insulin employ PI3K and AKT

for signal transduction, it is difficult to disentangle the
contribution of insulin versus IGF-1 to the modulation
of longevity. In animal models, selective downregulation
of circulating insulin levels improved the lifespan of
mice, and in elderly persons of the Leiden Longevity
Study, only insulin and glucose, but not IGF-1, consist-
ently met all four pre-defined criteria of healthy aging
[63, 67]. Therefore, it may be concluded that low circu-
lating insulin concentrations are not only a marker of
longevity but are causally involved in promoting health-
span or lifespan extension.

Detrimental combination of hyperinsulinemia with insulin
resistance
Insulin resistance is defined as an attenuated effect of in-
sulin on blood glucose homeostasis, primarily by less ef-
ficient export of glucose from the blood into skeletal
muscle, adipose, and liver tissue. Permanently elevated
insulin concentrations in the blood are often considered
as an attempt to overcome insulin resistance. Indeed, in-
duction of insulin resistance by genetic disruption of in-
sulin signaling, as well as by increased growth hormone
levels or an inflammatory milieu, causes hyperinsuline-
mia [68–70]. The opposite causality is of more relevance.
Hyperinsulinemia during insulin infusion in humans
leads to systemic insulin resistance [71], while in vitro,
high ambient insulin concentrations cause an increase in
insulin resistance in isolated adipocytes [72]. A summary
analysis of nine studies in rodents and seven trials in
humans confirmed that the first detectable change in the
fasting state, after feeding a high caloric diet for several
days, is an increase of basal insulin concentrations, but
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not of blood glucose concentrations or insulin resistance
[73]. Both increased secretion of insulin by ß cells and
decreased insulin clearance in the liver contribute to ele-
vated insulin levels post-meal, the latter being of primary
importance in the case of carbohydrate-rich food [74].
The combination of hyperinsulinemia and insulin re-

sistance appears to promote hypertension and athero-
genesis (Fig. 4). One important molecule for maintaining
vessel function, including relaxation of the arterial
smooth muscle layer, is nitric oxide (NO) which is
generated by endothelial NO synthase (eNOS). Insulin
increases NO production via posttranslational modifica-
tion of eNOS via PI3K/AKT activity; however, this
mechanism is suppressed during insulin resistance [75,
76]. Decreased local NO production impairs arterial
smooth muscle relaxation and concomitant vasodilata-
tion. An important factor in this context is the calcium
ion homeostasis of vascular smooth muscle cells. Under
physiological conditions, insulin promotes both calcium
influx into the cytoplasm of smooth muscle cells via sev-
eral ion channels, including L-type and store-operated
Ca2+ channels, and counterregulatory NO-mediated ef-
flux of Ca2+ and K+ ions which prevents calcium ion-
induced myosin light chain phosphorylation and

concomitant vascular contractility. During insulin resist-
ance, NO production is impaired while the supportive
effect of insulin on calcium ion influx (via PI3K delta
and possibly the MEK–ERK pathway) and vasoconstric-
tion is still present (Fig. 4) [77, 78].
At the same time, insulin signals through the mitogen-

activated protein (MAP) kinase pathway to upregulate
the expression of endothelin-1 (ET-1), plasminogen acti-
vator inhibitor-1 (PAI-1), adhesion molecules, and pro-
inflammatory cytokines [79, 80]. The renin-angiotensin
system is activated in the context of endothelial dysfunc-
tion and contributes together with decreased NO pro-
duction and increased ET-1 secretion to vascular
stiffening and upregulation of vascular tone [81–83]. In
the absence of hyperinsulinemia/insulin resistance, the
lower insulin levels exert less potential proatherogenic
activities which are counteracted by insulin-stimulated
local NO production [83, 84].
Elevated insulin levels also increase the risk of hyper-

tension by enhancing renal reabsorption of sodium ions
by several transport systems in different segments of the
nephron (Fig. 4). Signaling of insulin occurs via insulin
receptor substrate 2 (IRS2) and is not suppressed during
insulin resistance, while signaling via IRS1 for counterre-
gulatory mechanisms, including local NO production, is
impaired [85, 86]. These detrimental actions may be mit-
igated during chronic hyperinsulinemia/insulin resist-
ance [87]. However, a meta-analysis of 11 prospective
epidemiological studies showed that the pooled relative
risk of hypertension was 1.54 when comparing the high-
est to the lowest category of fasting insulin levels, and
1.43 for comparing highest to lowest (selective) insulin
resistance categories, calculated as homeostasis model
assessment of insulin resistance (HOMA-IR) [88].
As a consequence of endothelial dysfunction during

prolonged treatment with insulin, arterial lesions rich in
lipids are formed [89]. The progression of early fatty
streak lesions to plaques is accompanied by the adhesion
and pro-inflammatory activity of macrophages, which
eventually develop into foam cells. This process is driven
by endothelial and macrophage lipoprotein lipase activ-
ity, as demonstrated by the observation of less athero-
sclerosis in mice with inactivated lipoprotein lipase gene
[90–92]. Lipoprotein lipase activity in macrophages is
enhanced with higher insulin levels in vivo, but there is
no direct stimulatory effect of insulin on isolated macro-
phages [93].
The concern, that hyperinsulinemia might promote ar-

terial disease in diabetic persons, developed in the late
1960s, due to the steady increase of incidences of athero-
sclerosis in diabetic persons, despite improved glycemia
and decreased risk of ketosis due to insulin therapy [94].
Since then, a wealth of data supports the observation
that insulin resistance (and hyperinsulinemia) is a

Fig. 4 Hyperinsulinemia, insulin resistance, and cardiovascular
disease. High insulin concentrations in the blood may occur due to
genetic predisposition, overnutrition, or high-dose insulin treatment
of type 2 diabetes. Hyperinsulinemia induces “insulin resistance” as a
defense response to maintain glucose homeostasis. Conversely,
insulin resistance may be directly induced such as by growth
hormone or pro-inflammatory cytokines. Hyperinsulinemia and
insulin resistance enhance the risk of cardiovascular disease, by
inducing endothelial dysfunction, suppression of endothelial nitric
oxide synthase (eNOS), and activation and promotion of calcium ion
influx into smooth muscle cells, resulting in increased vascular tone,
enhanced reabsorption of sodium ions in renal tubules, adhesion of
macrophages to the vessel wall, and development of arterial lesions
with increased lipoprotein lipase activity and cardiovascular disease
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marker of increased risk of cardiovascular disease in the
general population and in patients with diabetes [95]. Al-
though observational studies suggested an approximately
linear relation between the severity of hyperglycemia
and vascular damage, several large randomized con-
trolled trials have shown that intense glycemic control
per se does not decrease the risk of macrovascular/car-
diovascular events [96]; indeed, insulin therapy may even
increase the risk [95, 97, 98]. However, these trials were
not randomized for insulin treatment, and treatment of
CVD risk factors was not kept similar between patient
subgroups. In the United Kingdom Prospective Diabetes
Study (UKPDS), hyperinsulinemia and insulin resistance

were not mitigated by insulin treatment, and fasting
plasma insulin levels even rose [97]. By contrast, in
UKPDS and other trials [97, 99–101], oral treatment
with the biguanide metformin reduced the risk of car-
diovascular events and in parallel decreased insulin re-
sistance and hyperinsulinemia.
In epidemiological studies of type 2 diabetes, it has

been consistently observed that the addition of insulin to
the treatment regimen or the intensification of insulin
treatment result in a higher rate of cardiovascular events
[102–121] (Fig. 5). Indeed, it has been shown that the
risk increases with increasing insulin dosage [111, 116].
These epidemiological studies may suffer from residual

Fig. 5 Hazard ratio of insulin medication versus different reference medications. Shown are adjusted hazard ratios (HR) for each study with 95%
confidence interval. #Moderate insulin exposure; +high insulin exposure; *moderate insulin dose (75 to < 100 units per day); §high insulin dose
(> 100 units per day)
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confounding, since it is difficult to account for the pos-
sibly more advanced disease stage of patients receiving
insulin. A higher rate of hypoglycemic events may be an
additional confounder. However, covariates considered
in the statistical analyses cover a broad range of poten-
tial risk factors from 18 different categories (Supplement
Table 1). Large randomized controlled trials such as
UKPDS [122] or the Outcome Reduction With Initial
Glargine Intervention (ORIGIN) Trial [123] did not ob-
serve an increased incidence of cardiovascular disease
with insulin therapy, but these trials focused on low-
dose insulin therapy of up to a median of 40 IU/day (or
0.4 IU/kg/day), respectively. Similar randomized trials of
higher-dose insulin therapy, as typical for real-world
conditions, have not been conducted. Recent studies of
real-world clinical settings report mean daily basal insu-
lin doses of close to 0.60 IU/kg in the Canadian REAL
ITY Study for insulin-experienced patients with type 2
diabetes [124] and of 0.73 IU/kg in a physician survey in
New York [125]. In the European multi-centre EU-
TREAT Study, mean baseline insulin doses were be-
tween 32 and 54 U per day, depending on the type of in-
sulin therapy regimen applied [126]. It can be concluded
that under real-world conditions, the majority of insulin-
experienced patients with type 2 diabetes receive higher
insulin doses per day than those tried in UKPDS or
ORIGIN.
In the absence of randomized controlled trials, a

Mendelian randomization is an appropriate approach of
testing for a causal relationship in humans. Mendelian
randomization studies made use of the finding that some
genotypes are associated with high or low fasting insulin
levels. When comparing individuals carrying ≥ 17 alleles
that raise fasting insulin levels with those exhibiting genet-
ically determined low fasting insulin levels, an increased
risk of elevated blood pressure, cardiovascular disease, and
type 2 diabetes was observed [127]. In two large recent
Mendelian randomization studies, a genetic profile pre-
dicting high insulin levels in the blood, after adjustment
for BMI, was also associated with increased systolic blood
pressure and risk of myocardial infarction [128].

Conclusions
As discussed above, insulin signaling engages at least
three different pathways and modifies a large number of
cellular responses (Table 1). Transient elevations of sys-
temic insulin concentrations are physiological responses
to dietary stimuli or other challenges such as environ-
mental toxins [129]. In case of prolonged upregulation
of insulin levels, such as in response to overnutrition,
glucose homeostasis is maintained by mitigating insulin
signaling via PI3K/AKT for glucose export from the
blood into tissues. Consequently, insulin resistance has
been considered as a defense response in order to avoid

hypoglycemia [38]. However, other hormonal actions of
insulin via the MAP kinase MEK/ERK pathway and in
part via PI3K/AKT are not or poorly inhibited by “insulin
resistance.” These pathways promote a host of anabolic re-
sponses including protein synthesis. Concomitantly, there
is an accumulation of ubiquinated and otherwise modified
proteins. Activation of mTORC1 results in the suppres-
sion of autophagy, i.e., the removal and turnover of pro-
teins and lipids. Signaling via MEK/ERK causes inhibition
of Nrf2 activation, with the consequence of a compro-
mised cytoprotective response to oxidative and other
chemical stress. This may be the reason for increased
DNA damage in the presence of high insulin concentra-
tions. Insulin resistance suppresses the activation of eNOS
by AKT, and the resulting endothelial dysfunction is en-
hanced by MEK/ERK-dependent expression of ET-1 and
PAI-1. Further detrimental actions of insulin during insu-
lin resistance are the promotion of calcium ion influx into
smooth vascular cells favoring contractility/vascular stiff-
ening and the enhanced sodium reabsorption in renal
tubules increasing the risk of hypertension.
These mechanistic insights lend support to the view

that the association of hyperinsulinemia with several det-
rimental health outcomes is of causal nature. Outcomes
include obesity, endothelial dysfunction, hypertension,
myocardial infarction, and decreased lifespan. We did
not discuss the possible contribution of hyperinsuline-
mia to cancer development or to the deterioration of
cognitive functions. Final proof of a causal relationship
between hyperinsulinemia and disease risk cannot be ob-
tained by randomized controlled trials, due to problems

Table 1 Key messages

• Insulin employs at least three different pathways of signal transduction.
One pathway involves phosphorylation steps via IRS–PI3K–AKT, another
is the MAP kinases Ras–MEP–ERK, and third leads to the activation of
NOX4.

• Insulin resistance is selective because it partially mitigates the PI3K/AKT
pathway for limiting glucose uptake and eNOS activation despite
hyperinsulinemia, but many other hormonal actions of insulin are not
suppressed.

• Signaling via mTOR and the MEP/ERK pathway causes suppression of
autophagy and NRF2, leading to deficient turnover and impaired cell
defense.

• Moderate to high normal insulin levels inhibit lipolysis and promote
lipogenesis/obesity.

• Insulin resistance and hyperinsulinemia are interdependent. Diet-
induced hyperinsulinemia precedes insulin resistance.

• In epidemiological studies, insulin therapy of type 2 diabetes is
associated with a higher risk of cardiovascular events or death.

• Randomized trials of insulin therapy and associated risks only studied
dosages up to 40 IU/day.

• Mendelian randomization studies found that genetically determined
high insulin levels lead to cardiovascular disease.

• Suppression of hyperinsulinemia and concomitant “insulin resistance”
provides substantial health benefits.
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with masking the type of intervention, long-term com-
pliance, and because of ethical concerns. Alternatively,
Mendelian randomization studies are suitable tools to
test for causality in humans, and such studies have
found hyperinsulinemia to increase the risk of obesity
[27, 28] and cardiovascular disease [127, 128].
A straightforward approach for lowering circulating

insulin levels is restricting the exposure of islet ß cells to
insulin secretagogues. One option is limiting calorie up-
take, either continuously or during defined periods of
the day or week [130–132]. Another effective way of
lowering insulin levels in the blood is the stimulation of
insulin clearance via exercise [133]. A different approach
is a bariatric surgery [134–136]. Gastric bypass leads to
rapid regression of hyperinsulinemia and later of insulin
resistance; additionally, there are substantial benefits
with regard to health outcomes and mortality. It seems
improbable that such marked clinical improvement
could have happened in the presence of persistent
hyperinsulinemia and insulin resistance.
We conclude that low fasting or circadian insulin

levels should be a primary aim of healthy lifestyle guide-
lines. Insulin treatment of type 2 diabetes seems only
warranted if hyperinsulinemia and concomitant (select-
ive) insulin resistance can be avoided. This favors insulin
treatment only in the late phases of type 2 diabetes as
has been suggested in recent guidelines [137].
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